ON THE FAMILY OF ALL TOPOLOGIES ON A SET

by Wan-chen Hsieh

i. Introduction.

A collection T of subsets of a non-empty set X satisfying the following
conditions:

(O0y4) the union of any Subcollectmn of 7 belongs to T;

(O,) the intersection of a flnl’ce subcollection of Tbelongs to T

(03) ¢ET, XeT,
is a topology on X. This is the most general way to define a topology on X. Under this
definition, the non-empty family F of all topologies on X is determined. In general the
familly F containes at least two topologies, namely, the trivial topology and the discrete
topology.

This paper is devoted to find, among F, some special topologies which have some
interesting properties and relations. i

il. Topology~valued mappings.

Let C be the collection of all subsets of a non-empty set X. A subcollection B C
need not be a topology on X. The idea of the subbase (see [ 2] pp. 44-48; [ 3] pp. 46-48;
[47 pp. 99-102) is to generate B to become a topology on X. To do this two operators
F, F* are introduced here. For any BcC,

F: F(B)={T:T=U 03B BE B

where UG nl B= U (‘nBiDg, I is any finite index set, and G is any arbitrary index set.
13 ig g€G

It is well known that F(B)=T is a topology and the weakest topology containing
the members of B as open sets on the topological space {X, T} (see [2] pp. 44-47; (3]
p. 48). Hence the operator F can be considered as a topology-valued mapping which
maps all subcollections of C onto the family F of all topologies on X.

The operator F* is defined as

F#: F¥ (B)={T: T= n U B, BeBj.

Unfortunately, F¥(B) is not always a topology on X, for example, let 7" be the cofinite
topology on an infinite set X, i.e., whenever TET, (X-T) is a finite subset of X, Then
" the complement T of T consists of its members with all finite subéets of X. It is
obvious that an arbitrary union of its members is not always a finite subset of X. This
does not meet the condition (Oy). However, the following theorems will be helpful.
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Theorem 1. F(B)=F* (B;) for any B=C.
Nete that the symbols used in this thecrem, and also in the sequel, are defined as
follows:
(i) B¢ is the complement? collecticn of B, ie.,
B¢={B.: Bc=(X-B), BEA},
() Fo(B)=[F(B)Je

Proof: The following diagram is useful in the preoef of this theorem.

B e L weB
[ o [
Bc —)F*(’Bc>

Let TEF(B). Then, by the De Morgan formulas,
TEX-U NBES N(X-NB)ED N UX-B)E N UB S THEF*(Be).
2€G i€l g€G i€l 266 1€l

zg¢d el

Corollary. F.* (B) is a tepolegy and the weakest topology such that all members
of B are closed sets in the topological space {X, F*. (B)}. '

This is a convenient way for one to find the weakest topclogy on X having the
desired p‘roper'ty menticned in the corollary above.

Theorem 2. I (B)=F* (B) for any finite subscollection Bz C.

Proof: Although the ope‘ratérs U, N1 are not commutative, yvet the members of the
two collections F(B), F’E‘CB) are one to one equals. This is due to the formulas

CUADNCUB )=U(A;: NB),
i€l jed jxg;

igl

(AADUCAB; )==N(AIUB;).
jed |€e.§

i

I1i. Dual topologices.

It has been pointed out, in Sec. TI, that I'* (B) need not be a topology on X if B is
not finite, and hence neither the complement 7. of a topology 7' on X. (see Theorem
1). So it is interesting to characterize a topology T whose complement 7. is also a
topology on X.

Definition. A topclogy T on X is a dual topology if the intersection of any subcol-
lection of T belongs to T

Theorem 3. For any topolegy 2 on X, 7"is a dual topology iff 7. is a topology
on X.

Proof: Suppose that 7 is a dual topology. From the formulas

QQG{CX‘-Tg)i Te€ T, gEG}:X-gEG {Tg: TeeT, g€G},

U(X-Te): Tpe T, geG=X- N{Ty Ty€ 7T, g€G},
g¢G g€ G

clearly; T. is a topology on X.

Conversely, if T and T. are both topologies on X, there éxists, a subbase B of T
such that , , ‘

F (B)=T and F* (B.)=7T. by the diagram in Sec. IL
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It is enough to prove that 7. is a dual topology. Since 7. is a topology, it is
sufficient to prove that the interseciion of any subcollection of 7. belongs to T.. But
the collection T is

Te==F* (Be)={Te: Te= N UYBe¢ Be€Bef.

geGicl
and by the generalized commutative and associative laws for intersections,

N Te=M (ﬂ UBcJ':?n UBc

helt heH geG igl keK 1¢1
holds for any arbitrary index set H. Hence T. is a dual topology on X, and therefore
the proof is complete.

The consequences below follow immediately from the theorem.

Corollary 1. If T is a dual topology, then T, is also a dual topology.

Corollary 2. If T and T. are both topologies on X, then they are both dual topolo-
gies. They form a pair of mutual dual topologies on X.

Iv. Filer topolegies.

It is well known that the intersection of two topologies on X is a topology on X,
however, the union of two topologies on X is not necessarily a topology on X. To be
sure to obtain their union as a topology on X, some specific topologies are needed. In
order to characterize these topologies, it is convenient to use the properties of the
filter below (see [ 2] pp. 150-151; [3] p. 83).

A filter L on a set X is a collection of non-empty subsets of X such that

(L})the intersection of two members of L belongs to L,

(Ly) if B €L and BcDcX, then DEL,

Definition. A topology T on X is a filter topology on X iff (T-¢) is a filter on X.

It is evident that for any filter L, ¢y L is a topology and hence a filter topology.

Theorem 4. If one of the two mutual dual topolgies on X is a filter topology, then
their union is a topology on X.

Proof: Let T and T be two mutual dual topologies on X, and one of them a filter
topology, say T. Then, by (L), any union of the members of T'yT. belongs to Ty 7.

Next, let Ty and T, be any two members of TyTe. It can be eaéily seen that
Ty ATETY Te whenever both Ty, and T, belong to T or T%¢. Now in the case that T2€ T,
Ty€ T, the fact that T N T TY T is by no means trivial. Suppose that ‘[N T:& 7. Then
it is sufficient to prove that TiNT.€ T'.. Since the topology T is the complement col-
lection of T%., so T: and (X-T,;) belong to T and hence TiN (X-Ty)=T1—(TiNT;) €T
Further, because T is a filter topology, it follows that X-(T'N'Ty) €T Therefore
T\ T€ Te. The proof will become complete by induction.

Because the topology Ty T is a union of two mutual complement collections, every
member of this topology is both open and closed. So that Theorem 4 shows a way to
construct a topology, other than the irivial topology and the discrete topology, whose
members a\re both open and closed.

Example. A pair of two mutual dual topologies on the set X={ab,c,d} are

T={¢p, (ab), (abe), (abd), X},
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Te={X, (cd), 4, ¢, ¢}.
Clearly, T is a filter topology and hence their union
TUT.=1{¢, c, d, (ab), (cd), (abc), (abd), X}
is a topology on X.
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